Unit 2-2: Writing and Graphing Quadratics

Worksheet Practice PACKET

| Name: ____________________ Period ______ |

Learning Targets:

<table>
<thead>
<tr>
<th>Unit 2-1</th>
<th>12. I can use the discriminant to determine the number and type of solutions/zeros.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling with Quadratic Functions</td>
<td>1. I can identify a function as quadratic given a table, equation, or graph.</td>
</tr>
<tr>
<td></td>
<td>2. I can determine the appropriate domain and range of a quadratic equation or event.</td>
</tr>
<tr>
<td></td>
<td>3. I can identify the minimum or maximum and zeros of a function with a calculator.</td>
</tr>
<tr>
<td></td>
<td>4. I can apply quadratic functions to model real-life situations, including quadratic regression models from data.</td>
</tr>
<tr>
<td>Graphing</td>
<td>5. I can graph quadratic functions in standard form (using properties of quadratics).</td>
</tr>
<tr>
<td></td>
<td>6. I can graph quadratic functions in vertex form (using basic transformations).</td>
</tr>
<tr>
<td></td>
<td>7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.</td>
</tr>
<tr>
<td>Writing Equations of Quadratic Functions</td>
<td>8. I can rewrite quadratic equations from standard to vertex and vice versa.</td>
</tr>
<tr>
<td></td>
<td>9. I can write quadratic equations given a graph or given a vertex and a point (without a calculator).</td>
</tr>
<tr>
<td></td>
<td>10. I can write quadratic expressions/functions/equations given the roots/zeros/x-intercepts/solutions.</td>
</tr>
<tr>
<td></td>
<td>11. I can write quadratic equations in vertex form by completing the square.</td>
</tr>
<tr>
<td>Applications</td>
<td>4R. I can apply quadratics functions to real life situations without using the graphing calculator.</td>
</tr>
</tbody>
</table>
Unit 2-2 Writing and Graphing Quadratics

Worksheets Completed

<table>
<thead>
<tr>
<th>Date</th>
<th>LTs</th>
<th>Pages</th>
<th>Problems</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quiz/Unit Test Dates(s)

<table>
<thead>
<tr>
<th>Date</th>
<th>LTs</th>
<th>Score</th>
<th>Corrected</th>
<th>Retake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quiz Retakes Dates and Rooms

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
1) Write an equation of the line through the points (2,-3) and (-1,0).

2) Solve: \(|2x - 5| = 3 \)

3) Solve: \(7x - 3(x - 2) = 2(5 - x) \)

4) Solve the system:
\[
\begin{align*}
x - 2y &= 16 \\
-2x - y &= -2
\end{align*}
\]

5) Solve the system:
\[
\begin{align*}
y &= 2x + 7 \\
4x - y &= -3
\end{align*}
\]

6) Find the x and y intercepts of the line \(3y - x = 4 \)

7) Evaluate: \(-3x^2 + 4x \) when \(x = -2 \)

8) Solve for \(x \): \(2(3 - (2x + 4)) - 5(x - 7) = 3x + 1 \)

ANSWERS

1) \(y = -x - 1 \)
5) \((2,11) \)
2) \(x = 4, 1 \)
6) \((0, 4/3), (-4,0) \)
3) \(x = \frac{2}{3} \)
7) \(-20 \)
4) \((4, -6) \)
8) \(x = 4 \)
Name: ___________________________ Period ________ Date ________

Practice 5-1 Modeling Data with Quadratic Functions

LT 1 I can identify a function as quadratic given a table, equation, or graph.
LT 2 I can determine the appropriate domain and range of a quadratic equation or event.
LT 3 I can identify the minimum or maximum and zeros of a function with a calculator.
LT 4 I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

Find a quadratic model for each set of values.

1. (–1, 1), (1, 1), (3, 9) 2. (–4, 8), (–1, 5), (1, 13) 3. (–1, 10), (2, 4), (3, –6)

4. \[
\begin{array}{c|c|c|c}
 x & -1 & 0 & 2 \\
 f(x) & 1 & -1 & 7 \\
\end{array}
\]

5. \[
\begin{array}{c|c|c|c}
 x & -4 & 0 & 1 \\
 f(x) & 1 & 9 & 16 \\
\end{array}
\]

6. \[
\begin{array}{c|c|c|c}
 x & -1 & 2 & 3 \\
 f(x) & 12 & 3 & 4 \\
\end{array}
\]

Identify the vertex and the axis of symmetry of each parabola.

7. \[
\begin{array}{c}
 x \\
 y \\
\end{array}
\]

8. \[
\begin{array}{c}
 x \\
 y \\
\end{array}
\]

9. \[
\begin{array}{c}
 x \\
 y \\
\end{array}
\]

LT 1 I can identify a function as quadratic given a table, equation, or graph.

Determine whether each function is linear or quadratic. Identify the quadratic, linear, and constant terms.

10. \[y = (x – 2)(x + 4)\] 11. \[y = 3x(x + 5)\] 12. \[y = 5x(x – 5) – 5x^2\]

13. \[f(x) = 7(x – 2) + 5(3x)\] 14. \[f(x) = 3x^2 – (4x – 8)\] 15. \[y = 3x(x – 1) – (3x + 7)\]

16. \[y = 3x^2 – 12\] 17. \[f(x) = (2x – 3)(x + 2)\] 18. \[y = 3x – 5\]
For each parabola, identify points corresponding to \(P \) and \(Q \) using symmetry.

19.

20.

21.

LT 4 I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

LT 2 I can determine the appropriate domain and range of a quadratic equation or event.

22. A toy rocket is shot upward from ground level. The table shows the height of the rocket at different times.

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (feet)</td>
<td>0</td>
<td>256</td>
<td>480</td>
<td>672</td>
<td>832</td>
</tr>
</tbody>
</table>

a. Find a quadratic model for this data.

b. Use the model to estimate the height of the rocket after 1.5 seconds.

c. Describe appropriate domain and range.

Answers:

Practice 5-1

1. \(f(x) = x^2 \)
2. \(f(x) = x^2 + 4x + 8 \)
3. \(f(x) = -2x^2 + 12 \)
4. \(f(x) = 2x^2 - 1 \)
5. \(f(x) = x^2 + 6x + 9 \)
6. \(f(x) = x^2 - 4x + 7 \)
7. \((0,1); x = 0\)
8. \((3,0); x = 3\)
9. \((-1,-2); x = -1\)
10. quadratic; quad: \(x^2 \); lin: 2x; const: -8
11. quadratic; quad: \(3x^2 \); lin: 15x; const: none
12. linear; quad: none; lin: -25x; const: none
13. linear; quad: none; lin: 22x; const: -14
14. quadratic; quad: \(3x^2 \); lin: -4x; const: 8
15. quadratic; quad: \(3x^2 \); lin: -6x; const: -7
16. quadratic; quad: \(3x^2 \); lin: none; const: -12
17. quadratic; quad: \(2x^2 \); lin: x; const: -6
18. linear; quad: none; lin: 3x; const: -5
19. \(P(0, 4), Q'(3, 1) \)
20. \(P'(-2, -2), Q'(-5, -5) \)
21. \(P''(2, 2), Q''(-1, -1) \)
22a. \(h = -16t^2 + 272t \)
22b. 372 feet
Name
Period
Date

Practice 5-2
Properties of Parabolas

LT 5 I can graph quadratic functions in standard form (using properties of quadratics).

LT 7 I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

Graph each function. If \(a > 0 \), find the minimum value. If \(a < 0 \), find the maximum value.

1. \(y = -x^2 + 2x + 3 \)
2. \(y = 2x^2 + 4x - 3 \)
3. \(y = -3x^2 + 4x \)

4. \(y = x^2 - 4x + 1 \)
5. \(y = -x^2 - x + 1 \)
6. \(y = 5x^2 - 3 \)

7. \(y = \frac{1}{2}x^2 - x - 4 \)
8. \(y = 5x^2 - 10x - 4 \)
9. \(y = 3x^2 - 12x - 4 \)

Graph each function.

10. \(y = x^2 + 3 \)
11. \(y = x^2 - 4 \)
12. \(y = x^2 + 2x + 1 \)

13. \(y = 2x^2 - 1 \)
14. \(y = -3x^2 + 12x - 8 \)
15. \(y = \frac{1}{3}x^2 + 2x - 1 \)
16. Suppose you are tossing an apple up to a friend on a third-story balcony. After t seconds, the height of the apple in feet is given by $h = -16t^2 + 38.4t + 0.96$. Your friend catches the apple just as it reaches its highest point. How long does the apple take to reach your friend, and at what height above the ground does your friend catch it?

17. The barber’s profit p each week depends on his charge c per haircut. It is modeled by the equation $p = -200c^2 + 2400c - 4700$. Sketch the graph of the equation. What price should he charge for the largest profit?

18. A skating rink manager finds that revenue R based on an hourly fee F for skating is represented by the function $R = -480F^2 + 3120F$. What hourly fee will produce maximum revenues?

19. The path of a baseball after it has been hit is modeled by the function $h = -0.0032d^2 + d + 3$, where h is the height in feet of the baseball and d is the distance in feet the baseball is from home plate. What is the maximum height reached by the baseball? How far is the baseball from home plate when it reaches its maximum height?

20. A lighting fixture manufacturer has daily production costs of $C = 0.25n^2 - 10n + 800$, where C is the total daily cost in dollars and n is the number of light fixtures produced. How many fixtures should be produced to yield a minimum cost?
Practice 5-2 continued

Graph each function. Label the vertex and the axis of symmetry. Plot 5 key points.

21. \(y = x^2 - 2x - 3 \)

22. \(y = 2x - \frac{1}{4}x^2 \)

23. \(y = x^2 + 6x + 7 \)

24. \(y = x^2 + 2x - 6 \)

25. \(y = x^2 - 8x \)

26. \(y = 2x^2 + 12x + 5 \)

27. \(y = -3x^2 - 6x + 5 \)

28. \(y = -2x^2 + 3 \)

29. \(y = x^2 - 6 \)
Practice 5-2 Answers:

1. \(\text{max. } (1, 4) \)
2. \(\text{min. } (-1, -5) \)
3. \(\text{max. } \left(\frac{2}{3}, \frac{5}{3} \right) \)
4. \(\text{min. } (2, -3) \)
5. \(\text{max. } \left(-\frac{1}{2}, \frac{5}{2} \right) \)
6. \(\text{min. } (0, -3) \)
7. \(\text{min. } \left(1, \frac{9}{2} \right) \)
8. \(\text{min. } (1, -9) \)
9. \(\text{min. } (2, -16) \)
10. \(\text{min. } (2, -3) \)
11. \(\text{min. } (2, -16) \)
12. \(\text{min. } (2, -3) \)
13. \(\text{max. } (1, 4) \)
14. \(\text{max. } (1, 4) \)
15. \(\text{max. } (1, 4) \)

16. 1.2 x 24 ft
17. \$6
18. $3.25
19. 81.125 ft; 156.25 ft
20. 20 fixtures per day
21. \(\text{max. } (2, 4) \)
22. \(\text{min. } (-1, 0) \)
23. \(\text{max. } (3, -3) \)
24. \(\text{min. } (3, -3) \)
Practice 5-3

Transforming Parabolas

LT6. I can graph quadratic functions in vertex form (using basic transformations).

LT7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

LT 8 I can rewrite quadratic equations from standard to vertex and vice versa.

LT 4 I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

Write the equation of the parabola in vertex form.

1.

2.

3.

4.

5.

6.

Graph each function.

7. \[y = (x - 2)^2 - 3 \]

8. \[y = (x - 6)^2 + 6 \]

9. \[y = \frac{1}{4}(x - 1)^2 - 1 \]
Practice 5-3 continued

10. \(y = 8(x + 1)^2 - 2 \)

11. \(y = -3(x - 1)^2 + 3 \)

12. \(y = 3(x + 2)^2 + 4 \)

13. \(y = \frac{1}{8}(x + 1)^2 - 1 \)

14. \(y = \frac{1}{2}(x + 6)^2 - 2 \)

15. \(y = 2(x + 3)^2 - 3 \)

16. \(y = 4(x - 2)^2 \)

17. \(y = -2(x + 1)^2 - 5 \)

18. \(y = 4(x - 1)^2 - 2 \)
Practice 5-3 continued

Write each function in vertex form.

19. \(y = x^2 + 4x \) \hspace{1cm} 20. \(y = 2x^2 + 8x + 3 \) \hspace{1cm} 21. \(y = -2x^2 - 8x \)

22. \(y = -x^2 + 4x + 4 \) \hspace{1cm} 23. \(y = x^2 - 4x - 4 \) \hspace{1cm} 24. \(y = x^2 + 5x \)

25. \(y = 2x^2 - 6 \) \hspace{1cm} 26. \(y = -3x^2 - x - 8 \) \hspace{1cm} 27. \(y = x^2 + 7x + 1 \)

28. \(y = x^2 + 8x + 3 \) \hspace{1cm} 29. \(y = 2x^2 + 6x + 10 \) \hspace{1cm} 30. \(y = x^2 + 4x - 3 \)

Write each function in standard form.

31. \(y = 3(x - 2)^2 - 4 \) \hspace{1cm} 32. \(y = -(1/3)(x + 6)^2 + 5 \) \hspace{1cm} 33. \(y = 2(x - 1)^2 - 1 \)

34. \(y = (2/3)(x + 4)^2 - 3 \) \hspace{1cm} 35. \(y = (x - 1)^2 + 2 \) \hspace{1cm} 36. \(y = -3(x - 2)^2 + 4 \)
Practice 5-3 continued

37. \(y = 4(x - 5)^2 + 1 \)
38. \(y = -2(x + 5)^2 - 3 \)
39. \(y = -5(x + 2)^2 + 5 \)

49. A model of the daily profits \(p \) of a gas station based on the price per gallon \(g \) is
 \[p = -15,000g^2 + 34,500g - 16,800. \]

Find the price that will the maximum profits.

What is the maximum profit?

What are the prices that will create a profit of $2000 per day.

What is the lowest price needed to break even?

Answers: Practice 5-3
Write the following in vertex form $f(x) = a(x - h)^2 + k$ form by completing the square. Verify your answer using $-b/2a$. Find the important information and sketch.

1. $f(x) = x^2 + 4x + 8$

 vertex form: ______________________

 vertex________max or min?

 x – int________

 y – int________

 axis of sym_____

 domain ________

 range________

2. $f(x) = 3x^2 - 18x + 15$

 vertex form: ______________________

 vertex________max or min?

 x – int________

 y – int________

 axis of sym_____

 domain ________

 range________
3. \(f(x) = 2x^2 + 10x + 12 \)

vertex form: ______________________

vertex_______ max or min?

x – int__________

y – int__________

axis of sym______

domain __________

range__________

Write the equation for the quadratic in \(f(x) = a(x - h)^2 + k \) form with the given vertex that passes through the given point.

4. Vertex (−6, 8) through point (−4, 10)
5. Vertex (−2, 7) through point (3, −18)

______________________ ______________________

ANSWERS

1. \(y = (x + 2)^2 + 4 \)

min (−2, 4)
x-int none
y-int (0, 8)
sym \(x = -2 \)
\(D (−∞, ∞) \) \(R[4, ∞) \)

2. \(y = 3(x - 3)^2 - 12 \)

min (3, −12)
x-int (5, 0) & (1, 0)
y-int (0, 15)
sym \(x = 3 \)
\(D (−∞, ∞) \) \(R \)

3. \(y = 2\left(x + \frac{5}{2}\right)^2 - \frac{1}{2} \)

min \(y = \left(-\frac{5}{2}, -\frac{1}{2}\right) \)
x-int (−2, 0), (−3, 0)
y-int (0, 12)
sym \(x = -\frac{5}{2} \)
\(D (−∞, ∞) \) \(R \left[-\frac{1}{2}, ∞\right) \)

4. \(y = \frac{1}{2}(x + 6)^2 + 8 \)

5. \(y = -1(x + 2)^2 + 7 \)
CPA2 Unit 2-2

Name _____________ Pd ______

LT 5. I can graph quadratic functions in standard form (using properties of quadratics).
LT 6. I can graph quadratic functions in vertex form (using basic transformations).
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.
LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.
LT 9. I can write quadratic equations given a graph or given a vertex and a point (without a calculator).
LT 10. I can write quadratic expressions/functions/equations given the roots/zeros/x-intercepts/solutions.
LT 11. I can write quadratic equations in vertex form by completing the square.

For problems 1 to 8, match each graph with its equation.

A. \(a(x) = (x + 1)^2 - 1 \)
B. \(b(x) = -x^2 - 1 \)
C. \(c(x) = (x - 1)^2 + 1 \)

D. \(d(x) = x^2 - 2x + 1 \)
E. \(e(x) = x^2 + 2x + 1 \)
F. \(f(x) = (x + 1)^2 + 1 \)

G. \(g(x) = (x - 1)^2 - 1 \)
H. \(h(x) = x^2 - 1 \)
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

Find the coordinates of the vertex for the parabola defined by the given quadratic function.

9. \(f(x) = 2(x - 3)^2 + 1 \)
10. \(f(x) = -2(x + 1)^2 + 5 \)

Find the coordinates of the vertex for the parabola defined by the given quadratic function.

11. \(f(x) = 2x^2 - 8x + 3 \)
12. \(f(x) = -x^2 - 2x + 8 \)

LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.
LT 11. I can write quadratic equations in vertex form by completing the square.
Look ahead to #13-19.
Rewrite the equations in standard form \((y = ax^2 + bx + c) \) into vertex form \((y = a(x-h)^2 + k) \) (Use completing the square for LT 11)
16) \(f(x) = 2x^2 + 4x - 3 \)
17) \(f(x) = 2x - x^2 - 2 \)

18) \(f(x) = -4x^2 + 8x - 3 \)
19) \(f(x) = 3x^2 - 12x - 1 \)

Look ahead to #13-19.
Rewrite the equations in vertex form \((y = a(x-h)^2 + k) \) into standard form \((y = ax^2 + bx + c) \).

13) \(f(x) = (x - 4)^2 - 1 \)
14) \(f(x) = (x - 1)^2 + 2 \)
15) \(f(x) = x^2 + 6x + 3 \)
LT 6. I can graph quadratic functions in vertex form (using basic transformations).
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

Find the important information about the following graphs and sketch. Describe the transformation of graph from \(y = x^2 \)

13. \(f(x) = (x - 4)^2 - 1 \)

Transformation _______________________

vertex_________max or min?

\(x \) – int__________

\(y \) – int__________

axis of sym_______

domain _________

range___________

14. \(f(x) = (x - 1)^2 + 2 \)

Transformation _______________________

vertex_________max or min?

\(x \) – int__________

\(y \) – int__________

axis of sym_______

domain _________

range___________
LT 5. I can graph quadratic functions in standard form (using properties of quadratics).
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

15. $f(x) = x^2 + 6x + 3$

vertex_________max or min?

x – int__________

y – int__________

axis of sym______

domain ________

range__________

16. $f(x) = 2x^2 + 4x - 3$

vertex_________max or min?

x – int__________

y – int__________

axis of sym______

domain ________

range__________
17. \(f(x) = 2x - x^2 - 2 \)

vertex_________max or min?

x – int__________

y – int__________

axis of sym_______

domain __________

range__________

18. \(f(x) = -4x^2 + 8x - 3 \)

vertex_________max or min?

x – int__________

y – int__________

axis of sym_______

domain __________

range__________
19. \(f(x) = 3x^2 - 12x - 1 \)

vertex_________max or min?
x – int__________
y – int__________
axis of sym______
domain _________
range__________

answers

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>(3, 1)</td>
<td>10.</td>
<td>(–1, 5)</td>
<td>11.</td>
<td>(2, –5)</td>
<td>12.</td>
<td>(–1, 9)</td>
<td>13.</td>
<td>min (4, –1)</td>
<td>x-int (5, 0) & (3, 0)</td>
<td>y-int (0, 15)</td>
<td>sym x = 4</td>
<td>D (–∞, ∞)</td>
<td>R [–1, ∞)</td>
</tr>
<tr>
<td>14.</td>
<td>min (1, 2)</td>
<td>x-int none</td>
<td>y-int (0, 3)</td>
<td>sym x = 1</td>
<td>D (–∞, ∞)</td>
<td>R [2, ∞)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>min (–3, –6)</td>
<td>x-int (\left(-3 \pm \sqrt{6}, 0 \right))</td>
<td>y-int (0, 3)</td>
<td>sym x = –3</td>
<td>D (–∞, ∞)</td>
<td>R [–6, ∞)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>min (–1, –5)</td>
<td>x-int (\left(-1 \pm \frac{\sqrt{10}}{2}, 0 \right))</td>
<td>y-int (0, –3)</td>
<td>sym x = –1</td>
<td>D (–∞, ∞)</td>
<td>R [–5, ∞)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>max (1, –1)</td>
<td>x-int none</td>
<td>y-int (0, –2)</td>
<td>sym x = 1</td>
<td>D (–∞, ∞)</td>
<td>R (–∞, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>max (1, 1)</td>
<td>x-int (\left(\frac{1}{2}, 0 \right), \left(\frac{3}{2}, 0 \right))</td>
<td>y-int (0, –3)</td>
<td>sym x = 1</td>
<td>D (–∞, ∞)</td>
<td>R (–∞, 1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>min (2, –13)</td>
<td>x-int (\left(2 \pm \frac{\sqrt{39}}{3}, 0 \right))</td>
<td>y-int (0, –1)</td>
<td>sym x = 2</td>
<td>D (–∞, ∞)</td>
<td>R [–13, ∞)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CP Algebra 2 Unit 2-2 LT 1 to 12 Name____________________

LT 1. I can identify a function as quadratic given a table, equation, or graph.
LT 3. I can identify the minimum or maximum and zeros of a function with a calculator.
LT 4. I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

1. Use your calculator to find a linear and a quadratic model for the following data.

<table>
<thead>
<tr>
<th>Year (0 = 1970)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billions of $</td>
<td>8.8</td>
<td>17.6</td>
<td>53.8</td>
<td>61.2</td>
<td>78.5</td>
<td>89.7</td>
</tr>
</tbody>
</table>

linear model: __________________ quadratic model: __________________

Which one is a better fit? __________ How do you know? _______________

2. Find the quadratic model containing the following points: (–2, 24), (–1, 13), (3, 9).

Y=____________________ What is the min/max? ______ Where is it? _______

LT 5. I can graph quadratic functions in standard form (using properties of quadratics).
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range

3. Do not use a calculator. Graph the following, showing the axis of symmetry and at least 5 plotted points. Fill in all requested information.

\[y = \frac{1}{4} x^2 + 2x + 1 \]

Equation of axis of symmetry: ______________

vertex: ______________

Max/Min of ______ at _______

y-intercept ______________

Domain_______ Range__________ x-int ____________
LT 6. I can graph quadratic functions in vertex form (using basic transformations).

4. Do not use a calculator. Graph the following. Describe the transformations. You must plot and state the 5 "key" points, wherever they end up after transformation.

a. \(f(x) = -(x + 1)^2 + 4 \)

b. \(f(x) = (x - 3)^2 \)

c. \(f(x) = -(x + 4)^2 - 2 \)

d. \(f(x) = 2x^2 - 5 \)

e. \(f(x) = \frac{1}{2}(x - 2)^2 \)

f. \(f(x) = -3(x - 1)^2 + 6 \)
LT 2 I can determine the appropriate domain and range of a quadratic equation or event.
LT 3 I can identify the minimum or maximum and zeros of a function with a calculator.
LT 4 I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

5. The cross section of a hill can be modeled by \(h(x) = -0.0025x^2 + 1.25x \) where \(h(x) \) is the height and \(x \) is the distance in feet. Graph the function on your calculator. What can give you a clue about the window settings? (the x-intercepts, y-intercept and the vertex!)

\[x\text{-min: } \quad \text{to } x\text{-max: } \quad y\text{-min: } \quad \text{to } y\text{-max: } \]

How wide is the hill? (from the start, over the peak, and down the other side) __________

What is the maximum height of the hill? __________

6. The number of dolls a toy company sells can be modeled by \(-4p + 80\), where \(p \) is the price of a doll. What price will maximize revenue? What is the maximum revenue?

\[R(x) = \quad \]

Max of _______ at __________

7. The equation \(h = 40t - 16t^2 \) describes the height \(h \), in feet, of a ball that is thrown straight up as a function of the time \(t \), in seconds, that the ball has been in the air.

At what time does the ball reach its maximum height?

What is the maximum height?

8. Find the minimum value of the function \(f(x) = x^2 + 6x - 1 \).
LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.

9. Write the following quadratics in standard form.
 a. \(y = (x + 3)^2 + 2 \)
 b. \(y = -(2x - 1)^2 + 5 \)

LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.
LT 11. I can write quadratic equations in vertex form by completing the square.

10. Write the following quadratics in vertex form. (Use completing the square for LT 11)
 a. \(y = x^2 + 2x + 10 \)
 b. \(y = -3x^2 + 12x - 5 \)

LT 9. I can write quadratic equations given a graph or given a vertex and a point (without a calculator).

11. Find the equation of the parabola in vertex form having a vertex of \((2, 4)\) and a y-intercept of \((0, 2)\).

LT 10. I can write quadratic expressions/functions/equations given the roots/zeros/x-intercepts/solutions.

12. Write an equation in standard form that has the given zeros:
 a) 5, -1/2
 b) \(4\sqrt{3}, -4\sqrt{3} \)
 c) 2i, -2i

13. Write an equation in vertex form that has the given zeros:
 a) 7, 3/2
 b) \(5\sqrt{2}, -5\sqrt{2} \)
 c) 6i, -6i
Unit 2-2 CP Algebra 2 Name ______________________ Pd ___________

LT 1,2,3,4,7,8,9,11*12 (if no calc)

LT 1 I can identify a function as quadratic given a table, equation, or graph.
LT 2 I can determine the appropriate domain and range of a quadratic equation or event.
LT 3 I can identify the minimum or maximum and zeros of a function with a calculator.
LT 4 I can apply quadratic functions to model real-life situations, including quadratic regression models from data.
LT 4R I can apply quadratics functions to real life situations without using the graphing calculator.

1. A parabola contains the points (10, 66), (3, 24), (-1, 44).

Find the equation with the regression capabilities of your calculator.

The equation is \(y = \) ________________

Estimate the of the function at \(x = 8 \).

Estimate the value of \(x \) when the function equals 50.

2. The income from ticket sales for a concert is modeled by the function \(I(p) = -70p^2 + 3500p \) here \(p \) is the price of a ticket.

First, do part a and b without the graphing capabilities of your calculator.

a. Calculate the maximum value of the function. (In other words, how high does the income go?)

b. What price should be charged in order to attain the maximum income?

Confirm your answers to a and b by using the graph in your calculator, along with a CALC menu option. What are your window settings?

\[x\text{-min:} \quad \text{to} \quad x\text{-max:} \quad \text{y-min:} \quad \text{to} \quad y\text{-max:} \]

3. A pair of numbers has a sum of 24. Find their maximum product.
4. A rectangle has a perimeter of 60 inches. What dimensions would maximize the area?

5. A rectangle has the dimensions \(w \) and \(170 - 2w \) in feet. What width will maximize the area? What is the maximum area?

6. A company knows that \(-2p + 1500\) models the number of wheelbarrows it sells per month, where \(p \) is the price of a wheelbarrow. Revenue from sales is the __________________________ times the __________________________.
 What price will maximize revenue? What is the maximum revenue?

7. The cross section of a hill can be modeled by \(h(x) = -0.0018x^2 + 1.44x \) where \(h(x) \) is the height and \(x \) is the distance in feet. Graph the function on your calculator. What can give you a clue about the window settings? (the \(y \)-intercept and the vertex!)
 x-min: ________ to x-max: ________ y-min: ________ to y-max: ________
 How wide is the hill? ____________ How high is the hill? ____________
8. From the Practice 5-2 worksheet:

19. The path of a baseball after it has been hit is modeled by the function \(h = -0.0032d^2 + d + 3 \), where \(h \) is the height in feet of the baseball and \(d \) is the distance in feet the baseball is from home plate. What is the maximum height reached by the baseball? How far is the baseball from home plate when it reaches its maximum height?

a. Do this problem without the graph in your calculator, and show each step in the process.

b. Now do the problem with the graph in your calculator. Include your window settings, and briefly explain what to do in the calculator to find your answers.

\[x\text{-min: } \underline{_______} \text{ to } x\text{-max: } \underline{_______} \quad y\text{-min: } \underline{_______} \text{ to } y\text{-max: } \underline{_______} \]

c. Also, using the graph, how far is the baseball from home plate when it lands on the ground, to the nearest tenth? What CALC menu option must you use?

LT 9. I can write quadratic equations given a graph or given a vertex and a point (without a calculator).

9. Find the equation of the parabola in vertex form having a vertex of \((3, 4)\) and a point \((-1, -4)\). Do this algebraically – show your work.
LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

10. Fill in the table:

<table>
<thead>
<tr>
<th></th>
<th>(y = \frac{1}{3}x^2 + 2x + 3)</th>
<th>(y = -2(x + 5)^2 + 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min/max value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y-intercept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.

LT 11. I can write quadratic equations in vertex form by completing the square.

11. Convert equation to vertex form or standard form as appropriate. (use completing the square for LT11)

4b. \(y = 3x^2 = 12x + 17 \)
5a. \(y = -\frac{1}{2}(x-4)^2 + 10 \)
Review for Unit 2-2
Name___________________

LT 2,3,4,5,6,7,8,11

LT 6. I can graph quadratic functions in vertex form (using basic transformations).

1. Graph the following. Show 5 plotted points.

 a. \[y = -2x^2 + 3 \]

 b. \[y = (x-3)^2 - 4 \]

LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, y-intercept, x-intercepts, domain and range.

2. Given \(f(x) = -2x^2 - 8x - 5 \), find:

 the axis of symmetry: _______________________

 the vertex: ________________

 the maximum value of the function: __________

 the y-intercept: __________

 domain: ___________ range ________________

 x-intercepts: __________________________
LT 8. I can rewrite quadratic equations from standard to vertex and vice versa.

3. What is the standard form for a quadratic equation? \(y = \) ________________

4. What is the vertex form of a quadratic equation? \(y = \) ________________

LT 11. I can write quadratic equations in vertex form by completing the square.

Use completing the square to rewrite the function into vertex form

5) \(f(x) = -2x^2 + 12x - 11 \)
6) \(2x^2 + 10x - 3 = y \)

Rewrite the function in vertex form by completing the square. Show all of the steps. Verify that your answer is correct by graphing your answer together with the original equation – do you get the same graph?

7. \(f(x) = x^2 + 6x - 22 \)
8. \(f(x) = 5x^2 + 60x - 8 \)

LT 2. I can determine the appropriate domain and range of a quadratic equation or event.
LT 3. I can identify the minimum or maximum and zeros of a function with a calculator.
LT 4. I can apply quadratic functions to model real-life situations, including quadratic regression models from data.

9. Find the approximate real roots (or real zeros) of the following quadratic equation, rounded to the nearest hundredth.
\[y = 3x^2 + 2x - 6 \]

a) no real roots
b) -1.75, 1.15
c) 1.08, -1.85
d) 1.12, -1.79
10. Find the zeros using the graphing calculator. (Round to 2 decimal places) \(2x^2 - 3x - 1 = y\)

\[x = \text{__________} \]

11. A ball is thrown from the top of a building and follows the path given by

\[h(d) = -0.05d^2 + 1.25d + 36.1875 \] where \(d\) is the distance on the ground in yards and \(h(d)\) is the height in yards.

a. Does the ball will ever reach a height of 60 yards? If so, at what distance?

b. Using any method of your choice, find the maximum height of the ball.

c. Using any method of your choice, find the distance (to the nearest whole yard) the ball is thrown when it hits the ground.

LT 5. I can graph quadratic functions in standard form (using properties of quadratics).

LT 7. I can identify key characteristics of quadratic functions including axis of symmetry, vertex, min/max, \(y\)-intercept, \(x\)-intercepts, domain and range.

12. Graph the parabola \(y = x^2 - 4x - 5\)

Opens?

Vertex __________\n
Min/max of __________\ at _______________\n
Equation of AOS _______________\n
Domain: _______________\n
Range: _______________\n
\(x\)-intercept(s) _______________\n\(y\)-intercept _______________\n
LT 4R. I can apply quadratics functions to real life situations without using the graphing calculator.

1. Among all pairs of numbers whose difference is 16, find a pair whose product is as small as possible. What the numbers and what is the minimum product?

2. You have 600 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed?

Answers:
1. 8 and –8, –64
2. 150ft by 300ft, 45000 sqft
Unit 2-1 LT 12. I can use the discriminant to determine the number and type of solutions.

CP Algebra 2 Discriminant

Fill in the chart:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Standard Form</th>
<th>Discriminant</th>
<th>Number and type of Solutions/Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $6x^2 + 3x + 4 = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. $x^2 = -6x - 9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. $3x^2 - 6 = -5x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. $2x^2 - x = -4$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRACTICE 5-8
Evaluate the discriminant of each equation. Tell how many solutions each equation has and whether the solutions are real or imaginary.

1. \(y = x^2 + 10x - 25 \)
2. \(y = x^2 + 10x + 10 \)
3. \(y = 9x^2 - 24x \)
4. \(y = 4x^2 - 4x + 1 \)
5. \(y = 4x^2 - 5x + 1 \)
6. \(y = 4x^2 - 3x + 1 \)
7. \(y = x^2 + 3x + 4 \)
8. \(y = x^2 + 7x - 3 \)
9. \(y = -2x^2 + 3x - 5 \)
10. \(y = x^2 - 5x + 4 \)
11. \(y = x^2 + 12x + 36 \)
12. \(y = x^2 + 2x + 3 \)
13. \(y = 2x^2 - 13x - 7 \)
14. \(y = -5x^2 + 6x - 4 \)
15. \(y = -4x^2 - 4x - 1 \)

ANSWERS:

Practice 5-8
1. 200; 2 real
2. 60; 2 real
3. 576; 2 real
4. 0; 1 real
5. 9; 2 real
6. -7; 2 imaginary
7. -7; 2 imaginary
8. 61; 2 real
9. -31; 2 imaginary
10. 9; 2 real
11. 0; 1 real
12. -8; 2 imaginary
13. 225; 2 real
14. -44; 2 imaginary
How Can You Help Control Soil Erosion?

Use the related graph or the discriminant of each equation to determine how many real number solutions it has. Circle the letter of the correct choice and write this letter in the box containing the exercise number.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x^2 + 2x - 3 = 0)</td>
<td>(D) two solutions</td>
</tr>
<tr>
<td>2. (x^2 - 4x + 4 = 0)</td>
<td>(C) two solutions</td>
</tr>
<tr>
<td>3. (x^2 - 2x + 2 = 0)</td>
<td>(H) two solutions</td>
</tr>
<tr>
<td>4. (x^2 + 5x + 4 = 0)</td>
<td>two solutions</td>
</tr>
<tr>
<td>5. (x^2 - 3x = 2)</td>
<td>one solution</td>
</tr>
<tr>
<td>6. (y^2 + 10y + 25 = 0)</td>
<td>no solutions</td>
</tr>
<tr>
<td>7. (2x^2 = 4x - 3)</td>
<td>two solutions</td>
</tr>
<tr>
<td>8. (4x^2 + 9 = 12x)</td>
<td>one solution</td>
</tr>
<tr>
<td>9. (-3n^2 + 5n - 2 = 0)</td>
<td>no solutions</td>
</tr>
<tr>
<td>10. (\frac{1}{2}x^2 + 3x + 8 = 0)</td>
<td>no solutions</td>
</tr>
<tr>
<td>11. (\frac{1}{3}t^2 + 3 = 2t)</td>
<td>two solutions</td>
</tr>
</tbody>
</table>

OBJECTIVE 4-f: To use the related graph or the discriminant of a quadratic equation to determine how many real-number solutions it has.
LT 12: I can use the discriminant to determine the number and type of solutions.

1) \(3k^2 + 8k - 5 = -10\)
2) \(-6n^2 + 5n + 4 = 5\)

3) \(7r^2 - 3r - 5 = -9\)
4) \(6r^2 + 10r = 4\)

5) \(-x^2 - 2x - 8 = -7\)
6) \(8r^2 - 8r + 10 = 8\)

7) \(-6m^2 + 3m + 3 = 9\)
8) \(-3m^2 - m - 6 = -10\)

9) \(5n^2 + n - 4 = -6\)
10) \(-6n^2 + 9n - 14 = -5n\)

11) \(7x^2 + 3x - 2 = 9x^2\)
12) \(16v^2 + 10 = 6 + 12v^2 - 8v\)

13) \(4k^2 - 14 = -14 + 10k\)
14) \(4x^2 - 7 = -12 - 4x\)

15) \(3n^2 - 2n - 8 = -3\)
16) \(-6v^2 - 16v - 5 = -13v\)